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A M I X I N G  L A Y E R  IN A H O M O G E N E O U S  FLU ID  

V.  Yu. Liapidevski i  UDC 532.542.4 

A mathematical modcl for the evolution of a mixing layer in shear flows is constructed. The 
problem of a mixing layer with pressure gradient is solved: in pa~icular, the distributions of 
the velocity and basic characteristics of turbulent flow in the mincing layer arc obtained. 

1. T U R B U L E N C E  M O D E L S  

The Prandt l  [1] and Taylor [2] models, which are based on the "gradient hypothesis," and their  de- 
velopment with the equations for tile turbulent energy and the scale of turbulence [3] are widely applied to 
calculation of shear flows of a homogeneous fluid. The hyl)othesis of the proport ional i ty  of tile Reynolds 
stresses to the kinetic turl)ulence energy in a developed turbulent layer underlies tile Townsend [4] and Brad- 
shaw [5] "hyperbolic" models. It is noteworthy that even in the cruse of an incompressible fluid, tim flows 
with free (internal and external) boundaries have a number of properties characteristic of the solutions of 
hypert)olic systems of equations. Tlm boundaries that divide tile regions of potent ia l  and turbulent  flows 
are w~ry distinct, and the flow perturl)ations related to defornmtion of these boundaries  propagate in a wavy 
manner with a finite velocity. The waves at the interfaces are responsible for one more specific feature of 
flows, namely, flow intermittency [6]. In the semiempirical theories of turbulence, this effect is usually related 
to turbulent diffusion and is simulated by appropriate "diffusion" terms in tile energy equation. The  resulting 
equations represent a complex nonlinear system for which even the construction of self-similar solutions by 
analytical methods  is difficult. For a homogeneous fluid, there is a limited number  of exact solutions, mainly, 
fbr the simplest models, which are based on the hypothesis of a mixing length. Among them are Tolhnien 
and G5rtler's sohttions for mixing layers and jets and Schlichting and T~\vlor's solutions for wakes [7]. 

Tim goal of this study is to analyze quite simple equations that describe a nonstat ionary interaction 
between the nle~tn flow and small-scale fluid motions. The l)msic system considered is obtained by means of 

further simplification of well-known models [4-6, 8]. 
The problem of the evolution of tangent discontiimity in a homogeneous fluid is considered in [9]. It  has 

been shown that  the nonlinear hyperbolic system constructed describes the process of transverse momentum 
transfer by "large vortices" generated by tile velocity shear. The solution of this system also determines 
the spread rate  of a turtmlized fluid in undisturbed flow. The average flow characteristics with allowance 
for intermitteney are ~bund from the solution of a linear hyperbolic system as soon as the distributions of 
the turbulent velocity and energy components are h)un(l. Despite an increased number  of equations, their 
structure is fairly simple to find explicitly a se l f  similar solution describing the decay of tangent discontimlity 
in a homogeneous fluid. In [10]. this analysis is applied to steady-state flows, and a self-similar solution for 

a mixing layer is constructed. 
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Ovsyannikov et al. [11. ChaI)ter 4] used a similar approach for stratified flows. The turbulent-  
intermixing model constructed in [11] describes the interaction between large vortices in homogeneous layers 
and interface waves an(l the mean flow. A linear analysis of the evolution of per turba t ions  of this system 
in steady-state "slipping" flow shows that  the amplitude of small-scale oscillations increases in any shear 
flow. This gives rise to "slippage" of homogeneous layers relative to the interlayers and creates conditions for 
exci tat ion of interface waves. Wave generation in the thermoline can also be described within the framework 

of this model. 
Here we construct a combined turbulent-internfixing model that is suitable for treating the evolution 

of a mixing layer with pressure gradient. One basic distinguishing feature of this model  is that  the mean-flow 
parameters  in the intermediate layer are first determined by solving a nonlinear sys tem of equations and 
the distributions of the average-velocity and turbulent-flow characteristics across the mixing layer are then  
restored from the solution of a senfilinear system of equations. 

2. F R E E  S H E A R  T U R B U L E N C E  IN A H O M O G E N E O U S  F L U I D  

B o u n d a r y - L a y e r  A p p r o x i m a t i o n .  Tile plane-parallel inotions of an effectively inviscid homoge- 
neous inconlpressible fluid (p ~ 1) are considered. Let the vertical average-velocity component v be small 
compared with tile horizontal coml)onent u. Titan, in tile presence of the vertical velocity stmar of u in flow, 
tile mtmmntmn is transferred along the vertical by the Reynohts stress 7" = - u ' v  ~. In the developed turbulent  
flow, tile dependence [6] 

7 = crq 2 (a = n0 sign'u:/, where a0 = const), (2.1) 

corresponds to experinmntal data. Here q2 = ur2 + yr., + wr2 is tim kinetic energy of the pulsatory motion (u ~, 

v ~, and w ' are the horizontal, vertical, and transverse pulsatory velocity components) .  Because tim quant i ty  
a0 is snmll (a0 ~ 0.15), tile transfer velocity in the vertical direction is also small compared to ttm velocity 
in the horizontal direction and one can pass to the boundary-layer apl)roximation by means of the following 

expansion of the variables: 
3/2 

:it: ~ :r, :tj --+ o'0y, t ~ O'ol/2t, 'It --~ a V --+ n o V. p --~ a o p ,  q ---* a 

Here p is the pressure, t is the time, and x and y are the horizontal and vertical coordinates.  The "diffusion 
terms" in the energy equation are regarded as higher-order quantities relative to ao in conq)arison with q3: 

('u '2 + v '2 + u,'2)u ' + p u '  = o(o'o)q 3, (u '2 + "v '2 + ur ' + p v '  = o(ao)q 3. 

In addition, we assume that  a '2 -~ d 2 -4- O(~70)q 2. 
Equating terms with the same degrees n0 in the Reynohls equations, we obta in  the boundary-layer 

equations 

'ttx + V.q = O, P y  = O, ut + ('tt 2 + P)z + (av - -  o'q2)y = O, 
(2.2) 

tt, ( lt2 q2 (.tt2 q2 ( ( s  q2.~ p.t,,) c ( \ ~  y -'" 
+ 7 ) ,  + , , 2  + Y ,  + + = . 

Here P = p + "tt t2 and a = sign ag.  

Because vortices of different scale are involved in turlmlent motion, by the quant i ty  q2 we mean the 

energy of oriented planar vortices. Then, the quantity ~ in the energy equation determines the rate of energy 
outflow to smaller-scale motions and can be given in the form ~ = a,,q 2 = q3/1 ,  where a,, is the characteristic 
frequency (w-t is the relaxation time) and l is the scale of turlmlence. To close sys tem (2.2), it is necessary to 
set the distribution of w or I in the flow. Generally, ttmse quantities are described by equatioiLs similar to the 
eimrg~ equation in (2.2). However, tbr the free turbulence geImrated by tangent discontinuity in a fluid (in 
particular,  for the class of self-similar solutions considered below), the frequency w in a fluid particle decreases 
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as t - l ,  i.e., w = tet - I  ( ~  = const and t is the time from the moment of formation of a tangent discontinuity). 
Thus, system (2.2) is closed by the choice of the constant ~e, which characterizes the energy-transfer velocity 
over tile spectrum, depending oil the relative position of the set of vortices considered in all tile eddy motions 

excited. 
" I m p u r i t y "  T r a n s f e r .  Any scalar quantity p (temperature. "impurity" concentration, density, etc,) 

that  is I)reserved in laminar  flow in a part icle is transferred by vortices in a turbulent flow. The equations for 
and ~) can be derived, similarly to system (2.2), from the conservation equations of the quantities p and 

~2 in a particle if the following hypothesis is adopted [4] @,2 = p,2): 

- ~ ' v '  = ay"q.  (2.3) 

The smallness of (7o allows us to apply tile above-mentioned expansion to the averaged equations for ~ and 
c; "-~2 and obtain, under  the assumption tha t  ~2'u' = o(a0)'~)2q, 9gr2"v t = O(CrO)('2q, and F'W = O(ao)~)q .  sinfilarly 

to (2.2), the equations of "impurity" t ranspor ta t ion (the bar over ~ is omitted): 

cy t + (cZu)~ + (cyv - aCq).~j = O, 
(2 .4 )  

The dissipation rate X of the root-mean-square fluctuations of the field is a~ssumed to be equal to \ = WcgV 2 
~ q / l ) .  

Thus, the "impuri ty" distribution in the flow can be found after construction of a solution of (2.2). 
The wflue of the expansion parameter in the model considered is fixed and not too small; therefore, discarding 
of these terms on the t)asis of the above ~sumpt ions  is not quite justified. 

However, the s t ructure  of the resulting equations is such that the process of turbulent  diffusion is related 
to the phenomenon of flow intermit tency in shear flow. Another specific feature of the equations obtained 
is that  the frequency w or ~,'c is inchuled only in tile right side an([ characterizes the state of turbulen('e in 
the moving volume chosen, which ~illows us to cotLsider the interaction between turbulent  flows with different 
i)roperties without  addit ional information on the turbulence-scale distribution in the entire flow. 

F l o w  I n t e r m i t t e n c y .  As a rule, free turl)ulent flows are bounded by tile potential-flow region. Under 
the action of large vortices, the  distinct boundary executes oscillations with an aml)litude conq)arable with 
the transverse dimension of the turbulent  flow [6]. This results in intermittency with the potential motion 
at a fixed l)oint of intense lmlsatory motion, i.e., in flow intermittency. The intermittency coefficient A, 
which characterizes the relative residence t ime in a completely turbulized fluid, can be used to determine the 

averaged stress 

= Aaq". (2.5) 

Here q2 is the energy of large vortices, which can be found by a conditional averaging over the region occul)ied 
by these vortices moving with the mean velocity ,u. Because of flow intermittency, the fixed volum~averaged 
velocity h and energy 0 2 differ from the turbulent  components n and q'-'. 

Assuming that  the scale of energy-containing vortices is much snmller than the scale of the vortices 
resi)onsible for the vertical transfer in shear flows, i.e., the energy-containing vortices play a passive role of 
the "'impurity." the equations for 5. (~, i), and ~6 caLL be introduced similarly to the "imlmrity"-distribution 

equations (2.4): 

f" = aqq. (2.6) 

In the bo |mdary-layer  api)roxinmtion, the equations fi)r mean quantities take the form 

'C~x + ~;,~ = O. Py = O, '~t + (~/" + P)z + (C~5 - ,~qq)~, = O, 
(2.7) 
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System (2.7) can be solved after q is found from (2.2). The intermittency coefficient A is determined from 

system (2.5), (2.6). 

H o r i z o n t a l l y  H o m o g e n e o u s  M o t i o n s .  If  the mean quantities in (2.2) and (2.7) do not depend on 

x, in par t icular  P - cons t  and v - 0, we ob ta in  the system examined in [9]. I t  is shown in [9] that  in this 

case, Eqs. (2.2) and (2.7) fi)rm a nonlinear hyperbolic system. The simplest problenl for this class of flows is 

the problem of tangent-discontimfity decay. T h e  problem is formulated as fbtlows. Let at t = 0 two layers of 
a potent ial  fluid move wi th  velocities u + and  their  boundary  be the line y = 0: 

u +, y > 0, 
u(0,  y)  = q(0, y) = O. (2.8) 

u - ,  y < 0 ,  

It  is required to solve sys tem (2.2), (2.8) for t > 0. I t  is noteworthy that  the flmctions u and q defined by 

(2.8) are a s teady solut ion of (2.2); however, this solution is unstable. A self-sinfilar solution is sought in the 

form u -- u(~), q = q(~), and w = (~t-t (~ = y / t ) .  In describing the evolution of large vortices, one can ignore 

their dissipation, i.e., one can set (~= 0. Here  the  solution of (2.2), (2.8) has a simple form: 

u + + u -  lu + - u - [  

u -  - - - - - ~ ,  q -- 2 ' I~[ < q" (2.9) 

For [(1 > q, the flow is undisturbed and l = 2qt (~r0 = 1 after expansion of the variables). The  self-similar 

solutions & = 22q/ l  = /3/t, 5, = 5(~), and  (~ = ~(~) of Eq. (2.7) with initial conditions (2.8) are also set 
explMtly  in tim region [~] < q: 

'(1 ~ 2-~  = ~2)~/2, fi(,~) = u + 3qo _,~ )3/ ds, ~t q0(1 - 1([ < 1, ~ = ~/q. (2.10) 

0 

The constant  q0 is found from the condition fi(q) = u + ensuring the contimfity of the fimction 5 on ~. The 

chok'e of the i )arameter  /3 determines the distr ibution of the average velocity 5 and the Reynohls stress ~:. 

Below, the correspondence between the s t eady-s ta te  solutions of system (2.2), (2.7) and the nonsteady-state 
x-homogeneous solutions of this system is established, which "permits us to choose this paramete r  with the 

use of ext)erimental mixing-layer data. 

3.  P R E S S U R E - G R A D I E N T - F R E E  S T A T I O N A R Y  F L O W S  

E q u a t i o n s  o f  M o t i o n .  The s t eady-s ta te  solutions of system (2.2) without  the pressure gradient 

(P  -= const) are descr ibed by the following system: 

ux + vy = 0, u'U.r + V'U.~ -- (aq2)y = 0, q(uqx + cqy -- 6tquy) = --o,,q 2, (3.1) 

Here (r = sign u~j. Pass ing to the variables x and  ~b with the s t ream function 0.~b/0x = - v ,  0"~/0'!1 = u as an 

independent variable, we obtain the sygtem 

u.(u.r -- (rrq2)g,) = 0, uq(qx -- aqtt~.) = _~,q2 (3.2) 

which coincides, in its basic part,  with the equations of nonstat ionary x-homogeneous motions. The system 

for the averaged /i and  0 is written siinilarly in the variables x and t;-. where O'~/Ox = - / )  and Ot'/Oy = 
'5. However. for cons t ruc t ion  of a solution, it is also necessary that the conditions of matching with the 

un(listurt)ed solution a t  the  border of the potent ia l  and turbulent motions formulated in the initial variables 

be satisfied. The  dependence  of the bounda ry  conditions on the velocity coml)onent v. elinfinated from (3.2), 

greatly (:onq)licates the  s t ructure  of the s teady-s ta te  solution. We now consider the mixing-layer prol)lem in 

more detail. 
M i x i n g  L a y e r .  A steady-state,  plane-parallel  mLxing layer forms when two homogeneous horizontal 

flows with velocities u -  and  u + (u + > u - )  merge at the point x = 0 (Fig. 1). In contrast  to the contact- 

discontinuity decay problein,  the external flow exerts a great effect on the mixing hkver. I f  the nfixing layer 
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Y = D ~  E 

Fig. 1 

FOE occurs as the initial par t  of a two-dimensional jet,  we have v = 0 on the axis of symmet ry  AB and, 

hence, throughout the undisturbed flow region FOAB; this leads to the following formulation of the problem 

(a = 1): to find a self-similar solution u = u(~), v = v(~), q = q(,~), /i = 5(~), ~ = ~(~), ~ = ,~(~), ~ = y/'J:, 

and Do ~< ~ ~< Dz of systems (2.2), (2.7) that  is subject  to the  discontinuity conditions at the boundary 

= D, D = Di  (i = 0 and 1) 
q 2  

k \ 2  + " ~ ) v - q 2 ' " ]  ' 

(3.3) 

D[u-'2] = [uv-qqi ,  D L t  2 + = [(-~- +- } . - ) '# -q@].  D[5] = [5], 

F o r ~ > D l ,  w e h a v e u = u  + , q = 0 ,  v = 0 ,  f i = u  + , ~ = 0 ,  a n d ' ~ = 0 .  F o r ~  < D0, wehave  u =  u - , q = 0 ,  

5 = u,-, and r = 0. Here [11 = f ( D  + o) - f(D - 0),  where D = Di (i = 0 and 1). 
The boundaries of the mixing layer Di are de te rmined  together with the solution of the problem. 

To construct the solution of the posed problem, the d is t r ibut ion  of the frequencies -, and c? in the flow 

shouhl be set. As for the tangeat-discontimfity decay t)roblem, we use the vortices comparable in scale 

with the mixinK-layer thickness as a system of vortices execut ing  the vertical transfer. In this case, their 
dissipation can be ignored, i.e., a,' = 0. We assunle tha t  the quant i ty  a) is represented in the form & = 2ZTq/l 

in [i'ee turbulent flows. For ~v = 0, system (3.2) formally coincides with the equat ions of nonstat ionary x- 
homogem~us intermixing; therefore, one can use the solution (2.9) of the tangent-discontinuity decay problem, 
i.e., to set u = (u -  + u + ) / 2  and q = (u, + - u - ) / 2  for Do <~ ~ ~< Dz. The boundary  conditions tbr these systems 

are in correspondence ~us well. As the quantity D + = •  is the  discontinuity velocity for a nonstationary 

system, passing to the s teady-s ta te  case, we have 

D + = D I u ,  - ty=Dla + -  t;i = D l u  + =  (u + -  u - ) / 2 ,  D -  = D O t t - -  v o = D o u  - v = - ( u ,  + -  u - ) / 2  

o r  

u + - u -  Do-  u + - u - ( u  + - u -  ) (u +- 'u- )  2 
D I -  2u---------~--, u + ~ u - k  2 u  -~ + 1  . v =  4u + 

This solution shows tha t  the flow boundaries are nonsymmet r i c  relative to the x axis. Tile mixing layer 

deviates toward a slower flow. The maximunl deviation is observed when the homogeneous flow outflows 
with velocity u, + to the quiescent fluid. Here Dl = 1/2 and Do ---- - 3 / 2 ,  or, re turning to the initial varial)les. 

D, = (U2)~0 and Do = - ( 3 / 2 ) ~ 0  (~0 = 0.15). 
Because of the nonhomogeneity of the equations for iL '5, and ~. the solution (2.7) sul)ject to conditions 

(3.3) depends on the pa ramete r  ," = u - / u  + (0 ~< r ~ 1). On the interval Do < ~ < DI. this solution is 

determined by the system 

d z  = ~, d5  13"uq4 d4  _ ihtz[t (3.4) 
d~ d~ q'-' - z '2" d~ q2 - z 2" 

Here z = ~5 - 'b, q = (u + - u - ) / 2 ,  and u = (u + + u - ) / 2 .  T h e  boundary conditions for system (3.4) are 

relations (3.3): 
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[ z ] = 0 ,  [51=(-1)i[41 for { = D i ,  i = 0 ,  1. (3.5) 

Since the value of v and, consequently, the value of z should be given only from one side of the 
inixing bwer by virtue of the fornmlation of the problem, for example for { > D1, for system (3.4) we 

tlave three bonndary conditions. The case v = 0 for { > D1 is a singular case, because here we have 
z (D ,  + O) = D l u  + = q, and solution (3.4) reaches a singular point  as ~ -~ Dt - 0 by virtue of (3.5). At 
the singular point, 0 = 0, and consequently, [5] = 0, i.e., the solution oil the right side is continuous. The 

necessary one-constant arbitrariness is ensured by the fact tha t  the o n ,  parameter  family of solutions reaches 

the singular point. 
The parameter/3 is determined from experimentM data.  Ti le  value of/3 = 6 describes tile velocity and 

Reynolds-stress distributions in the mixing layer with sufficient accuracy, as is slmwn in [10]. At the same time, 
the mlution depends wealdy on 3, and, for/3 = 4, the self-similar solution (2.10) also shows satisfactorily the 
distribution of the desired quantities ill the mixing b\ver. In part icular ,  we have rmax = 1.18- 10-2(u + - u - )  2 
for/~ = 6 and r,,,ax = 1.41"10-2(u + - u - )  2 for/3 = 4. We note that ,  for even natural  values of the parameter/3,  
expressions (2.10) give an explicit representation of tile solution in the  form of the polynomials of a self-similar 

variable [10]. 
For various values of the 15arameter r, the nfixing-layer spread rate also can be found from solutions 

(3.3) and (3.4). In the model considered, it is natural to use the quant i ty  10 = (D1 - D 0 ) x  as a laver thickness, 
i.e., in tile initial variables d lo /dx  = 2aoR = 0.3R, where R = (u + - u - ) / ( u +  + u - ) .  However, for comparison 
with experinmntal data,  the quantity It = y0.95 - !/0.t, wtmre Y0.95 and !]o.l are the values of y at which 
�9 5 - u-  = 0.95(u + - u - )  and i't - u -  = 0.1(u + - u - ) ,  respectively, is usually used. 

We note that tim effective mixinD1wer width Ii is a factor  of 2 smaller than  the maximum thickness 

lo [10]. 
B o u n d a r y  C o n d i t i o n s  for  S y s t e m  (2.2).  By virtue of tile nonlinearity of the equations of motion. 

the continuous contiguity of the turbulent (q # 0) and potential  (q = 0) solutions of system (2.2) is impossible 
[11]. Therefore  it is necessary to consider the discontinuous solutions. It is simple to obtain the discontinuity 
conditions fi)r the general case. For our Imrposes, it is sufficient to obtain them for horizontally homogeneous 

and steady-state flows. 
In the case of horizontally homogeimous flows, for "u = u( t ,  y), q = q(t, y) ,  v -- O, and P - coast system 

(2.2) has the following form (w' -- 0): 

( u2 @'~ - ( a u q  2) = 0  ( ~ = s i g n u : , ) .  (3.6) "u~ - (aq2).,, = O, \ - ~  + ] ~ 

Equations (3.6) are a nonlinear hyperbolic system. Its characteristics are specified by" the equations d y / d t  = 

•  The nonlinearity and hyperbolMty of Eqs. (3.6) result in the occurrence of discontinuities in the 
solutions, i.e., M)rupt fronts dividing the regions of turbulent  and potential flows. On the lines of the 
discontinuities propagating with velocity D = dy /d t ,  the Hugoniot  conditions 

D[u] = -[aq2], D [ u - / .  + q2/2] - [ a u q  2] (3.7) 

are satisfied. Here a = sign [u] and [f] = f ( t ,  y + 0) - f ( t ,  y - 0). 
Functions (2.9) satisfy both  system (3.6) and the discontinuity conditions (3.7). Thus, (2.9) is a 

generalized solution of problem (2.8). It is noteworthy that  the  Lax stability condit ion for discontimfities 

is also fulfilled [12]. Thus,  (2.9) is a generalized stable solution of  problem (2.8), (3.7) and describes the 
across-flow l)ropagation of "large vortices" generated by the Kelvin-Hehnhol tz  instability. 

For steady-state flows, system (3.1) is no hmger hyperbolic relative to the wlriable :r. Howe,>r, after 
elinfination of the flmction v and after passage to the variables x and t/). it becomes hyperbolic relative to 
this variable. Moreover, for co = 0, system (3.2) coincides with (3.6). The discontimfity conditions tbr system 
(3.1) also can be reduced to the nmkstationary case. The replacenmnt of the variable z = Du - v reduces 

system (3.3) to the form 

z = D u ( x ,  y - O) - v (x ,  y - O) = D u ( x ,  y + O) - v (x ,  y + O), 
(3.s) 
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= + q'-'/2] = 

Conditions (3.8) coincMe with (3.7), and the solution of tile mixing-layer problem is found from solution 

(2.9). 

4. M I X I N G  L A Y E R  W I T H  P R E S S U R E  G R A D I E N T  

In Sees. 2 and 3, a self-similar solution of tile contact-discontinuity and pressure-gradient-free mixing- 
layer problems has been constructed. Here tile generation of "large vortices" was determined by solution (2.9). 
We note that  the average wxlues of the velocities and the level of turbulence upon decaying of tile contact 
discontinuity in a pressure-gTadient-free mixing layer coincide with the exact solution (2.9). In addition, it 
follows froin (2.9) that  the rate of entraininent into tim turbulent  intermediate layer is proportional to the 
velocity of "large vortices": 

'q, + ('q'5,)x = 2o-#. (4.1)  

Here q is the thickness of the interlayer and i/ and (t are the average vahles of tile flow velocity and the 
velocity of "large vortices." Thus. for mixing layers, tile entrainnlent  rate (4.1) allows us to describe the 
prol)erties of the sohltions of the more developed model (2.2). For flows of a homogelmous or stratified fluid 
with pressure gradient, the vertical distribution of the velocity and energy of "large vortices" already becomes 
inhomogeneous within the framework of model (2.2). Nevertheless, for various types of flow. the application of 
the rate of fluid entrainment from homogeneous layers into a turbulent  interlnediate laver, which is specified 
by Eq. (4.1), h~ks shown the efficiency of this approach in deternfining the average flow characteristics. On 
the basis of (4.1), a shallow-water, three-layer model tha t  describes the evohltion of a turbulent h\ver in the 
flows of homogeneous and stratified fluids with w4ocity shear was constructed in [13, 14]. 

It should be noted that  tile role of the shallow-water multib\ver equations is not  lilnited by the possibility 
of determining the average quantities in the flow. As ill the ease of a pressure-gradient-free mixing layer, the 
average velocity of "large w)rtices" 0 determines the vertical distribution of the tl,eynolds stresses ~: in the 
flow from formula (2.6), and the turbulent-layer thickness 'rl can be selected as a scale of turbulence I. Here 
the w;rtical-velocity and turbulent-energy distributions are described b,v system (2.7) in the boundary-layer 
approximation. 

T h r e e - L a y e r  M o d e l .  We consider the problem of the formation of a mixing i~\ver in a homogeneous 
fluid in a channel of finite depth. Let the flow be bounded by two horizontal planes, the distance between 
which is equal to H, and the channel be filled with a fluid. Th e  gravity cml be excluded b.v introducing the 
modified tm;ssure p* = p + p g ( H  - y) = p*(t, :r). To describe the evolution of the average quantities in the 
mixing layer, we apply tile three-layer, shallow-water equations,  in which together  with the usual shallow- 
water equations for homogeneous hlyers, the laws of conservation of total momentum and energy necessary 
to find the flow parameters in a turbulent interlayer [13, 14] are used. 

The steady-state flow equations for the average w~lues in tile layers have tile form (p -- 1) 

( h,+ + '1 + h - ) .  = 0. (h.:~u+)z = - o ' q ,  (q~.).  = 2o0 ,  

( ( u •  + = o. (h+( , , ,+)  2 + 2 + / , - ( . , - ) ' - '  + = 0, (4.2) 

( h + ( , + )  a + ,/o(a" + q") + h - ( , , - )  + 20v*)  = 0. 

Here h +, h - ,  and q are tile depths, u + and u-  are the velocities ill tile upper and lower layers, resl)ectively. 
and/i~ is tile velocity in the interllwer, respectively, and 0 = h+u+ + qgt + h tt ~ const. 

Let, for x = 0, the steady-state nlixing iayer form Kom two uniform flows of depth h0 ~ moving with 
velocity u{ (Fig. 2). As a consequence of (4.2) we have tile following relations: 

h + + 'r I + h,- H,  [ t +a  + + 'q'EL/2 +" + l l 'gt/2 h 0 = = ho ~o ' h - t t -  + = 't/, 0 , 
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( u + ) 2 / 2  + p* = (..0+)2/2 + t o,* ( u - ) 2 / 2  + = (.,,-)2/2 + To,* 
(4.3) 

h+(u+)  2 + q5 2 + h - ( u - )  2 + p*H = ho+(Uo+) 2 + ho(uo)  2 + p~H,  

h+(u+)  3 + 'q~(n 2 + (12) + h , - ( u - )  3 + 2Qp* = h 0+ (u 0+)3 + h0- (u 0-)3 + 2Qpo . -  �9 

Here Q + + = h o % + h i Uo.  
From (4.3), the desired variables q, h +, u +, ~,, p* - p~ = Ap,  and (1 can be expressed ~s flmctions of 

one variable, for example,  Q = qS. By virtue of the nonlineari ty of  the systenl, these dependences can be 

ambiguous. For a given value of Q ~> 0, system (4.3) can be reduced to one equat ion in terms of the quant i ty  
a = (u + + u - ) / 2  as follows. 

Let a >/ 0 be given. Then,  (u+) 2 - ( n - )  2 = (u+) 2 - (uo)  2 or 7 = 7oao/a,  where 7 = (u + - u - ) / 2 ,  

= (,'.+o - . , o ) / 2 .  a n d  = + .,7)/2. F,,,'thor. 

u + = a + 7 ,  'u, a - - 7 ,  h +  + + - =  = ( h  o %  - Q / 2 ) / u  +, h - = ( h o u  o - Q / 2 ) / u - ,  

q . . . .  H - h  + h - ,  5 0171. A p  P* "Po*= ((u+) 2 - ( u  +) )/_.2 9 

Sul)stituting the resulting expressions into the conservat ion law of" total  m o m e n t u m ,  we obtain the 
equation P(a ,  Q) = h,+(u+) '2 + ,l'fi, 2 + h - ( u - )  '2 - h+(u+) 2 - h o ( u o )  2 + A p H  = 0 f rom which the de4)endence 

a = a(Q) can be found and the values of the admissible flow pa ramete r s  (h, • > O, 'r I > 0, and u • > 0) are 
restored. The del)endence q2 = q2(Q) is determined fronl the energy equation, and,  finally, the distribution 

of the flow parameters  over the x axis can be found fronl the equa t ion  d Q / d x  = 2(zq(Q). 

V e l o c i t y  D i s t r i b u t i o n  in t h e  M i x i n g  Laye r .  T h e  distr ibutions of the  average (luantities in the 

nfixing layer have been found above. I,~ particular, the boundar ies  y = h - ( x )  and y = h - ( x )  + q(x)  of the 

nfixing layer, the velocity of "large vortices" (1 = ~(x), and the pressure on the uppe r  lid of the channel 
p* = p*(x) are found from Eqs. (4.3)..Therefore, for the horizontal  and vertical velocity-vector components  

u = 5,(:r, y) and v = P'  !1), and also/ 'or tile root -mean-square  velocity q = r~(x, y), ill the botutdary-layer 

api)roximation the stea~,.v-state flow equatiolls (2.7) take the form (p -= 1) 

5,~ + b v = O. 55,~. + 55, - cr(1q-x + p* = O, 50,: + ~,l:j - cr@y = - / 3 @ / q .  (4.4) 

Here c~ = Cro sign 5:r 
It is required to find a solution of (4.4) in the nfixing layer h - ( : r )  < ! / <  b - ( x )  + q(x), because the large 

vortices-induced vertical transf~r is al)sent in the potential-flow regions 0 < ?! < h , - (x)  and H - b + ( x )  < !] < H 

((1 = 0) and the veh)city ,u, = u• does not (lel)end on y. T h e  vertical conlponent  v in these regions is 

uniquely restored fl'oln the continuity equation and the no-slip condit ion at the boundar ies  

~(x, Y) = -!*'t.-; for 0 ,< ?j < h-(:~), 

" 5 ( x , y ) = ( H - y ) u  + for H - h + ( x ) < y ~ H ,  
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and  turbulence is absent  (+~ ~ 0). Because a continuous solution in the domain 0 < g < H is being 

constructed,  the solution of (4.4) is known at the boundary of the mixing region. Let u, + > u o and the 

velocity profile be monotone  (5~j ~> 0). Then. we have cf = cr 0. For construction of the solution inside 
the  mixing layer, it is convenient to pass to the variables x and 0 (~', is a s tream function). As in the 

above-considered case of a t)ressure-gTadieut-free mixing layer, Eqs. (4.4) become a semilinear system: 

~ - ~qq, / ,  = -p*+/;,.+ q~ - ~q,-++ . . . .  ~ q q / ( @ ) .  (4.5)  

A solution of (4.5) is sought in the half-I)and :c >7 0, ~b o ~< ,g, ~< '~/~+, where 

hi; H 

/ / C o  = - ,a (o ,  :,j) d:,j = - h , ,  ",o,  +e,,-~ = a(o. :2 d:j = h*o ~,,g. 
0 hg 

T h e  streamline passing through the point A. at which the homogeneous flows merge (Fig. 3), corresponds to 
the wdue t/, = 0. The  boundary  of the mixing layer is set by tile lines AB aud AC. The solutiou 5 = u,-(:r), 

(1 = 4 = 0 is known to the left of the line AB (region I). Similarly. the solution has the form /~ = u+(x) ,  
~t = 4 = 0 to thr right of ttle line AC (in region II). It is required to find a continuous solution of (4.5) up to 

the boundary  in the region BAC. The lines AB and AC specified by the equatkms U' ---- q)-(x) and '~, = '~+,+(x) 

~re the characteristics of system (4.5): 

d+r _ @(:+:). --d+"+(:") = ~q(:r). 
dx dx 

Thus, it is required to find a solution of the Goursat  problem using the data on the characteristics for 

tile semiline, ar hyperl)olic system (4.5) [q(:r) > 0]. If" the function 'u-(:r) /> umi,, > 0 in region I (0 < x < .~:t ), 
the  a p',+iori es t imate  5(x, (z)/> Umi, > 0 holds in the region BAC for a monotone velocity profile in the mixing 
layer (5,/. /> 0), and the only difficulty in solving (4.4) is the singularity of the right side of the equatious,  

because  q(:r) --+ 0 as x ---* 0. We note that  the above sohltion of system (4.2) has bounded derivatives, i.e., 
the  fimction p.~ is bounded  as x ---+ 0. Therefore, the pressure-gradient-free, self-similar solution considered 

in See. 3 gives the asympto t ic  representation of the solution in the neighborhood of tile point A. 
If  a reverse flow [u- (x)  < 0] appears  as a result of the increase in pressure p* during the (levelopment 

of ~t nfixing layer in a channel of finite depth, the f~rtntflation of the problem changes. In this paper,  we omi t  

it. 
P r o b l e m  o f  a n  I n j e c t o r .  We consider the prol)lem of a flat injector as an exami)le of the format ion  

of a mixing layer with pressure gradient. 
Let an injector be located in a flat channel of det)th H and length L (Fio. 4). The channel is immersed  

into a quiescent incompressible fluid of density .p0 = 1 and is connected to it freely. A uniform jet  of an 

ideal inr fluid of thickness h o, density P0, and velocity u o flows out from the injector in parallel  
to  the bo t tom of the channel (which can be considered as a plane of symmetry  of the flow). As a result  of 

the  develol)ment of tile mixing layer, the steady-state flow is accelerated in the upper layer. It  is required 
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to de te rmine  the flow parameters,  the velocity distril)ution at tile exit from tile channel, and tile "optimal" 
disposit ion of the injector,  i.e., the values of  h o / H  and L / H  at which the mixing layer covers tile entire cross 
section at the channel exit.  To reduce the problem to that  considered above, it is sufficient to supplement 
Eqs. (4.3) by the relat ion 

(u+)2/2 + P; = PO, (4.6) 

which fi)llows fronl the potential-flow condition in the upper layer. Here P0 is the pressure in the quiescent 
fluid. The  desired quanti t ies  are u +, 5, h +, q, Ap = p* - p~, and u +. The conditions p~ = P0 and u + = 0 
are satisfied at the channel  exit. We do not consider the case where the mixing layer reaches the channel lid 
(h + ---- 0), because it becomes an immersed jet  in this case. If the channel length L is known, the additional 

re la t ion 
QL / 1 

L = .  2aq(Q-----~dQ (4.7) 

0 

follows fi'om the rate of fluid entrainment into the mixing layer. The  dependence of the desired quantit ies 
Ql = 7liSt and q = (I(Q) (0 < Q < Ql)  on the parameter u + can be found from (4.3) and (4.6), and the 
dependence  L = L(u +) can be found from Eq. (4.7), and then the 1)arameter u + is (lefine(l. Indeed, for 

~,+ = 0,  we  have  (0 < ~ +  < " o )  
+ + - ' )  

QI = ~ l n l  = 2h 0 , . 0 .  (~ t l ) "  = ( ' . o )  2 - ( " + ) 2 ,  

_ h0 ",0 ,  A p  = p0 - p~ = . , + / 2 .  ( 4 . 8 )  h,-{ - h ~ 1 7 6  Q 1 / 2  h o u o -  + + 

tt I tt 1 

+ + 2  ho(,Uo)2 hi-(u]-)2 H(u+)2/2 h 0 ( u  0 )  + - _ 'ql = Q , / S l ,  'Fq = ~,+ + 
~gt 0 It 0 

For 0 < Q < Q1, the deI)endence q2 = q2(Q, u+) is found from (4.3) similarly to the above-, considered 

mixing layer, and the channel length u-~ can be found from (4.7) for a specified value of L = L(u+). 
For an "optimal" injector (h. + --- 0 and h~- = 0), we derive the following equation for tile unknown 

quant i ty  z = h,o/H from (4.8): 

4z - 1 + :(z  - 1 / 2 ) / ( 1 -  z) 2 = 0. 

The  single root z, ~ 0.267 can be calculated fi'om this equation. The dimensionless l)arameters of the flow and 
the "opt imum" length of the channel are then deternfined from (4.7) and (4.8). In particular. L / H  ~- 5.38. 
Figure  5 shows the mean-veh)city (curve 1) and Reynolds-stress (curve 2) distributions at the outl)ut cross 

section of the "optimal" channel for /3 / (2a)  = 6. 
This  work was supported by the Russian Foundation for Fundamental  Research (Grant No. 98-01- 

00750). 
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