Journal of Applied Mechanics and Technical Physics, Vol. 41, No. 4, 2000

A MIXING LAYER IN A HOMOGENEOUS FLUID

V. Yu. Liapidevskii UDC 532.542.4

A mathematical model for the evolution of a mixing layer in shear flows is constructed. The
problem of a mizing layer with pressure gradient is solved: in particular, the distributions of
the velocity and basic characteristics of turbulent flow in the miring layer are obtained.

1. TURBULENCE MODELS

The Prandtl [1] and Taylor [2] models, which are based on the “gradient hypothesis,” and their de-
velopment with the equations for the turbulent energy and the scale of turbulence [3] are widely applied to
calculation of shear flows of a homogeneous fluid. The hypothesis of the proportionality of the Reynolds
stresses to the kinetic turbulence energy in a developed turbulent laver underlies the Townsend [4] and Brad-
shaw [5] “hyperbolic™ models. It is noteworthy that even in the case of an incompressible fluid, the flows
with free (internal and external) boundaries have a number of properties characteristic of the solutions of
hyperbolic systems of equations. The boundaries that divide the regions of potential and turbulent flows
are very distinct, and the flow perturbations related to deformation of these boundaries propagate in a wavy
manner with a finite velocity. The waves at the interfaces are responsible for one more specific feature of
flows, namely, flow intermittency [6]. In the semiempirical theories of turbulence, this effect is usually related
to turbulent diffusion and is simulated by appropriate “diffusion” terms in the energy equation. The resulting
equations represent a complex nonlinear system for which even the construction of self-similar solutions by
analvtical methods is difficult. For a homogeneous fluid, there is a limited number of exact solutions, mainly,
for the simplest models, which are based on the hypothesis of a mixing length. Among them are Tollmien
and Gértler’s solutions for mixing layers and jets and Schlichting and Taylor’s solutions for wakes [7].

The goal of this study is to analyze quite simple equations that describe a nonstationary interaction
between the mean flow and small-scale fluid motions. The basic system considered is obtained by means of
further simplification of well-known models [4-6, 8].

The problem of the evolution of tangent discontinuity in a homogeneous fluid is considered in [9]. It has
been shown that the nonlinear hyperbolic system constructed describes the process of transverse momentum
transfer by “large vortices” generated by the velocity shear. The solution of this system also determines
the spread rate of a turbulized fluid in undisturbed flow. The average flow characteristics with allowance
for intermittency are found from the solution of a lincar hyperbolic system as soon as the distributions of
the turbulent velocity and energy components are found. Despite an increased number of equations, their
structure is fairly simmple to find explicitly a self-similar solution describing the decay of tangent discontinuity
in a homogeneous fluid. In [10]. this analysis is applied to steady-state flows, and a self-similar solution for
a mixing layer is constructed.
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Ovsyannikov et al. [l1. Chapter 4] used a similar approach for stratified flows. The turbulent-
intermixing model constructed in {11] describes the interaction between large vortices in homogeneous layers
and interface waves and the mean flow. A linear analysis of the evolution of perturbations of this system
in steadv-state “slipping” flow shows that the amplitude of simall-scale oscillations increases in any shear
flow. This gives rise to “slippage” of homogeneous layers relative to the interlayers and creates conditions for
excitation of interface waves. Wave generation in the thermoline can also be described within the framework
of this model.

Here we construct a combined turbulent-intermixing model that is suitable for treating the evolution
of a mixing layer with pressure gradient. One basic distinguishing feature of this model is that the mean-flow
parameters in the intermediate layer are first determined by solving a nonlinear system of equations and
the distributions of the average-velocity and turbulent-flow characteristics across the mixing layer are then
restored from the solution of a semilinear system of equations.

2. FREE SHEAR TURBULENCE IN A HOMOGENEOUS FLUID

Boundary-Layer Approximation. The plane-parallel motions of an effectively inviscid homoge-
neous incompressible fluid (p = 1) are considered. Let the vertical average-velocity component v be small
compared with the horizontal component u. Then, in the presence of the vertical velocity shear of u in flow,
the muinentum is transferred along the vertical by the Reynolds stress 7 = —u/v’. In the developed turbulent
flow, the dependence [6]

T =0o¢* (o0 = opsignuy,, where = gy = const), (2.1)

corresponds to experimental data. Here ¢° = u”2 + v'% + w'? is the kinetic energy of the pulsatory motion (u’,
v', and w’ are the horizontal, vertical, and transverse pulsatory velocity components). Because the quantity
oo is small {5y & 0.15), the transfer velocity in the vertical direction is also small compared to the velocity
in the horizontal direction and one can pass to the boundary-layer approximation by means of the following
expansion of the variables:

~1/2 /2 , 3/2 1/2
r—x, y—oy, t—oy't, wu—oyu, v—oyv. p—ogp, q—0oy q

Here p is the pressure, ¢ is the time, and x and y are the horizontal and vertical coordinates. The “diffusion
terms” in the energy equation are regarded as higher-order quantities relative to o in comparison with g

(u2 + 0?2 + ) +pu = o(o0)®,  (WF+ 0% + ) + pv' = o(oo)q>.

In addition, we assume that v = v'2 + O(go)q>.
Equating terms with the same degrees g in the Reynolds equations, we obtain the boundary-layer
equations

wet v, =0, Py=0, w+(u+P);+(uw—og?), =0,

"2 2 2 2 u 2 )
(-l—;— + %), + ((% + (—12—)1§+Pu)t + ((é— + %—)u%-Pv —aqzu)y = —=¢.

&

(2.2)

Here P = p+u™” and o = sign u,.

Because vortices of different scale are involved in turbulent motion, by the quantity ¢> we mean the
energy of oriented planar vortices. Then, the quantity < in the energy equation determines the rate of energy
outflow to smaller-scale motions and can be given in the form ¢ = wq® = ¢°/I, where w is the characteristic
frequency (w™! is the relaxation time) and ! is the scale of turbulence. To close system (2.2), it is necessary to
set the distribution of w or [ in the flow. Generally, these quantities are described by equations similar to the
energy equation in (2.2). However, for the free turbulence generated by tangent discontinuity in a fluid (in
particular, for the class of self-similar solutions considered below), the frequency w in a fluid particle decreases
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as t7!, i.e., w = at~! (2 = const and ¢ is the time from the moment of formation of a tangent discontinuity).
Thus, system (2.2) is closed by the choice of the constant @, which characterizes the energy-transfer velocity
over the spectrum, depending on the relative position of the set of vortices considered in all the eddy motions
excited.

“Impurity” Transfer. Any scalar quantity ¢ (temperature, “impurity” concentration, density, etc.)
that is preserved in laminar flow in a particle is transferred by vortices in a turbulent flow. The equations for
« and ¥ can be derived, similarly to system (2.2), fromn the conservation equations of the quantities ¢ and
©? in a particle if the following hypothesis is adopted [4] (2 = ¢2):

Py

—'v = oyq. (2.3)

The smallness of oo allows us to apply the above-mentioned expansion to the averaged equations for Z and

2 and obtain, under the assumption that @2’ = o(d0)¥?q, ¢"2v/ = o(ag)¢?q, and Ju’ = O(0y)wq. similarly
to (2.2), the equations of “impurity” transportation (the bar over ¢ is omitted):

7 + 2 .L'+ oV — =0-
@ + (eu)e + (pv — oq), (2.4)

(5+5),+ (5 + ), + (5 +5)o-osea), =
a2

The dissipation rate x of the root-mean-square fluctuations of the field is assumed to be equal to \ = w2
(we ~ ¢q/1).

Thus, the “impurity” distribution in the flow can be found after construction of a solution of (2.2).
The value of the expansion parameter in the model considered is fixed and not too small; therefore, discarding
of these terms on the basis of the above assumptions is not quite justified.

However, the structure of the resulting equations is such that the process of turbulent diffusion is related
to the phenomenon of flow intermittency in shear flow. Another specific feature of the equations obtained
is that the frequency w or w, is included only in the right side and characterizes the state of turbulence in
the moving volume chosen, which dllows us to consider the interaction between turbulent flows with different
properties without additional information on the turbulence-scale distribution in the entire flow.

Flow Intermittency. As a rule, free turbulent flows are bounded by the potential-How region. Under
the action of large vortices, the distinct boundary executes oscillations with an amplitude comparable with
the transverse dimension of the turbulent flow [6]. This results in intermittency with the potential motion
at a fixed point of intense pulsatory motion, ie., in flow intermittency. The intermittency coefficient A,
which characterizes the relative residence time in a completely turbulized fluid, can be used to determine the
averaged stress

7= Aog. (2.5)
Here ¢ is the energy of large vortices, which can be found by a conditional averaging over the region occupied
by these vortices moving with the mean velocity . Because of flow intermittency, the fixed volume-averaged
velocity 4 and energy §2 differ from the turbulent components « and q.

Assuming that the scale of energy-containing vortices is much smaller than the scale of the vortices
responsible for the vertical transfer in shear flows, i.e., the energy-containing vortices play a passive role of
the “impurity.” the equations for i. ¢, o, and P can be introduced similarly to the “impurity”-distribution
equations (2.4):

= odq. (2.6)
In the boundary-layer approximation, the equations for mean quantities take the form

Uy + 0y =0, p’g =0, @+ (& + P)y+(ad— aqq)y =0,

(2.7)
72 q‘z 2 62 - 2 (12 } - o
BBy (24 DYarpa) + (T o+ L)os o ouin) = -t
(2+2)t+((2+2>“+P“>x+((2+2)U+ vToy) =T
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System (2.7) can be solved after ¢ is found from (2.2). The intermittency coefficient A is determined from
system (2.5), (2.6).

Horizontally Homogeneous Motions. If the mean quantities in (2.2) and (2.7) do not depend on
z, in particular P = const and v = 0, we obtain the system examined in [9]. It is shown in [9] that in this
case, Eqgs. (2.2) and (2.7) form a nonlinear hyperbolic system. The simplest problem for this class of flows is
the problem of tangent-discontinuity decay. The problem is formulated as follows. Let at ¢ = 0 two layers of
a potential fluid move with velocities u* and their boundary be the line y = 0:

{ ut, y>0.
u(0,y) = q(0.y) = 0. (2.8)
u”, y<0,
It is required to solve system (2.2), (2.8) for ¢ > 0. It is noteworthy that the functions u and ¢ defined by
(2.8) are a steady solution of (2.2); however, this solution is unstable. A self-similar solution is sought in the
form u = u(¢), ¢ = q(€), and w = at~! (€ = y/t). In describing the evolution of large vortices, one can ignore
their dissipation, i.e., one can set a = (). Here the solution of (2.2), (2.8) has a simple form:
_ut 4w fut —u

u= —T——, q= _2——,
For |¢| > q, the flow is undisturbed and | = 2qt (09 = 1 after expansion of the variables). The self-similar
solutions @ = 2d¢q/l = B/t, i = (&), and ¢ = §(§) of Eq. (2.7) with initial conditions (2.8) are also set
explicitly in the region [f | <q

1€l <q (2.9)

¢
W(€) = u+ 3qo / (1= ds, G=q(1-C)P2 <1, ¢(=¢/q (2.10)
0

*+ ensuring the continuity of the function & on &. The

The constant ¢g is found from the condition @(q) = u
choice of the parameter 3 determines the distribution of the average velocity & and the Reynolds stress 7.
Below, the correspondence between the steady-state solutions of system (2.2), (2.7) and the nonsteady-state
xr-homogeneous solutions of this system is established, which permits us to choose this parameter with the

use of experimental mixing-layer data.

3. PRESSURE-GRADIENT-FREE STATIONARY FLOWS

Equations of Motion. The steady-state solutions of system (2.2) without the pressure gradient
(P = const) are described by the following system:

up + vy =0, wng +vuy — (0q2)y =0, q(ug; + vqy —oquy) = —wq, (3.1)
Here o = signu,,. Passing to the variables z and ¢ with the stream function 9¢/0zx = —v, 9¢/0y = u as an
independent variable, we obtain the syStem
‘ 2
w(uy = (00%)y) =0, ug(qe — oqu,) = —wq?, (3.2)
which coincides, in its basic part, with the equations of nonstationary z-homogeneous motions. The system
for the averaged & and § is written similarly in the variables x and . where Ow/0z = —0 and 90 /0y =

&. However, for construction of a solution, it is also necessarv that the conditions of matching with the
undisturbed solution at the border of the potential and turbulent motions formulated in the initial variables
be satisfied. The dependence of the boundary conditions on the velocity component v. eliminated from (3.2).
greatlv complicates the structure of the steady-state solution. We now consider the mixing-layer problem in
more detail.

Mixing Layer. A steady-state, plane-parallel mixing layer forms when two homogeneous horizontal
flows with velocities u~ and u* (vt > u~) merge at the point 2 = 0 (Fig. 1). In contrast to the contact-
discontinuity decay problem, the external flow exerts a great effect on the mixing layer. If the mixing layer
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FOE occurs as the initial part of a two-dimensional jet, we have v = 0 on the axis of symmetry AB and,
hence, throughout the undisturbed flow region FOAB; this leads to the following formulation of the problem
(0 = 1): to find a self-similar solution u = u(§), v = v(§), ¢ = q(§). & = &(§), § = §(&). # = 6(8), £ = y/x,
and Dy < & < D, of systems (2.2), (2.7) that is subject to the discontinuity conditions at the boundary
E=D,D=D; (i=0and1)

2 2 2 2
Dfu] = [v]. D[u?] = [uv - ¢°]. D[(%— + %)u] = [(32— + %—)U - qzu.],

(3.3)

a2 52 52 2
Dla] =[], D[i?] = [ad — qq], D[(I-;— + %—) [L] = [(% + %—)F/ - (1(717}.
For ¢ > D), wehaveu =ut, q=0,0=0,4= ut,G=0,and 7 = 0. For £ < Dg, we have u = u~, ¢ = 0,
i =u",and § = 0. Here [f] = f(D+0) — f(D —0), where D = D; (i =0 and 1).
The boundaries of the mixing layer D; are determined together with the solution of the problem.
To construct the solution of the posed problem, the distribution of the frequencies w and & in the flow
should be set. As for the tangent-discontinuity decay problem, we use the vortices comparable in scale
with the mixing-layer thickness as a system of vortices executing the vertical transfer. In this case. their
dissipation can be ignored, i.e., w = 0. We assume that the quantity & is represented in the form & = 203q/1
in free turbulent flows. For w = 0, system (3.2) formally coincides with the equations of nonstationary -
homogeneous intermixing; therefore, one can use the solution (2.9) of the tangent-discontinuity decay problem,
ie.toset u= (v +ut)/2andq= (vt —u")/2for Dp < & < Di. The boundary conditions for these systems
are in correspondence as well. As the quantity D* = +q is the discontinuity velocity for a nonstationary
system, passing to the steady-state case, we have

DY=Dju—-v=Dyut - vy =Djut= (ut-u")/2, D™= DOu” — vg=Dou — v=—(u"—u")/2

or
ut —u~ ut —u= put —u” ut —u™)?
D1= L . D0:__ —_( _+_1) U=—( )
2ut ut +u 2ut 4ut

This solution shows that the flow boundaries are nonsyminetric relative to the z axis. The mixing layer
deviates toward a slower flow. The maximum deviation is observed when the homogeneous flow outflows
with velocity ut to the quiescent fluid. Here Dy = 1/2 and Dy = —3/2, or, returning to the initial variables.
D, = (1/2)og and Dy = —(3/2)ag (79 = 0.15).

Because of the nonhomogeneity of the equations for @, ¥, and 4. the solution (2.7) subject to conditions
(3.3) depends on the parameter r = v~ /ut (0 < r < 1). On the interval Dy < § < Di. this solution is
determined by the system

dz . du Buqq dg Suzq
—=U, === 5 T==—F 5 - 3.4
d¢ ¢ de ¢ —z%  dE q* — 22 (3-4)

Here z = i — 9, ¢ = (ut —u7)/2, and u = (ut +u7)/2. The boundary conditions for system (3.1) are
relations (3.3):



[z]=0, [@]=(-1)']g] for £€=D;, i=0.1 (3.5)

Since the value of » and, consequently, the value of z should be given only from one side of the
mixing layer by virtue of the formulation of the problem, for example for £ > Dy, for system (3.4) we
have three boundary conditions. The case v = 0 for £ > D; is a singular case, because here we have
z(Dy +0) = Djut = g, and solution (3.4) reaches a singular point as { — D; — 0 by virtue of (3.5). At
the singular point, § = 0, and consequently, [&] = 0, i.e., the solution on the right side is continuous. The
necessary one-constant arbitrariness is ensured by the fact that the one-parameter family of solutions reaches
the singular point.

The parameter 3 is determined from experimental data. The value of § = 6 describes the velocity and
Reynolds-stress distributions in the mixing layer with sufficient accuracy. as is shown in [10]. At the same time,
the solution depends weakly on 3, and, for § = 4, the self-similar solution (2.10) also shows satisfactorily the
distribution of the desired quantities in the mixing laver. In particular, we have Fyax = 1.18-1072(ut —u™)?
for 3 = 6 and Fax = 1.41-1072(ut —u™)? for 8 = 4. We note that, for even natural values of the parameter 3,
expressions (2.10) give an explicit representation of the solution in the form of the polynomials of a self-similar
variable [10].

For various values of the parameter r, the mixing-layer spread rate also can be found from solutions
(3.3) and (3.4). In the model considered, it is natural to use the quantity Iy = (D — Dp)x as a layer thickness,
i.e., in the initial variables dly/dx = 209R = 0.3R, where R = (u™ —u™)/(u™ + ™). However, for comparison
with experimental data, the quantity [} = yo.95 — yo.1. Where yg95 and yo are the values of y at which
- u” =0.95{ut —u”) and @ —u~ = 0.1{u" — u7), respectively, is usually used.

We note that the effective mixing-layer width {; is a factor of 2 smaller than the maximum thickness
Iy [10].

Boundary Conditions for System (2.2). By virtue of the nonlinearity of the equations of motion.
the continuous contiguity of the turbulent (q # 0) and potential (g = 0) solutions of systemn (2.2) is impossible
[11]. Therefore. it is necessary to consider the discontinuous solutions. It is simple to obtain the discontinuity
conditions for the general case. For our purposes, it is sufficient to obtain them for horizontally homogeneous
and steady-state flows.

In the case of horizontally homogeneous flows, for w = u(t, y), ¢ = q{t.y), v =0, and P = const system
(2.2) has the following form (w = 0):

ul

. ¢ .
ug — (0q%), =0, (—2— + -12—)’ - (auqz)y =0 (o =signu,). (3.6)

Equations (3.6) are a nonlinear hyperbolic system. Its characteristics are specified by the equations dy/dt =
+v2¢. The nonlinearity and hyperbolicity of Eqs. (3.6) result in the occurrence of discontinuities in the
solutions, i.e., abrupt fronts dividing the regions of turbulent and potential flows. On the lines of the
discontinuities propagating with velocity D = dy/dt, the Hugoniot conditions

Diu] = —[oq?]. D[u?/2 + ¢%/2]) = —[ouq?] (3.7)

are satisfied. Here ¢ = sign [u] and [f] = f(t,y +0) — f(t.y — 0).

Functions (2.9) satisfy both system (3.6) and the discontinuity conditions (3.7). Thus, (2.9) is a
generalized solution of problem (2.8). It is noteworthy that the Lax stability condition for discontinuities
is also fulfilled [12]. Thus, (2.9) is a generalized stable solution of problem (2.8), (3.7) and describes the
across-flow propagation of “large vortices” generated by the Kelvin-Helmholtz instability.

For steady-state flows, system (3.1) is no longer hyperbolic relative to the variable x. However, after
elimination of the function v and after passage to the variables o and . it becomes hyperbolic relative to
this variable. Moreover, for w = 0, system (3.2) coincides with (3.6). The discontinuity conditions for system
(3.1) also can be reduced to the nonstationary case. The replacement of the variable z = Du — v reduces
system (3.3) to the form

z = Du(x,y — 0) — v(z,y — 0) = Du(x,y + 0) — v(z,y +0),
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A = ~loq?)s =u2/2 +q%/2] = ~loug?.

Conditions (3.8) coincide with (3.7), and the solution of the mixing-layer problem is found from solution

(2.9).

4. MIXING LAYER WITH PRESSURE GRADIENT

In Secs. 2 and 3, a self-similar solution of the contact-discontinuity and pressure-gradient-free mixing-
layer problems has been constructed. Here the generation of “large vortices™ was determined by solution (2.9).
We note that the average values of the velocities and the level of turbulence upon decaying of the contact
discontinuity in a pressure-gradient-free mixing layer coincide with the exact solution (2.9). In addition, it
follows from (2.9) that the rate of entrainment into the turbulent intermediate layer is proportional to the
velocity of “large vortices™:

ne + (ni), = 207. (4.1)

Here 5 is the thickness of the interlayer and & and § are the average values of the flow velocity and the
velocity of “large vortices.” Thus. for mixing layers, the entrainment rate (4.1) allows us to describe the
properties of the solutions of the more developed model (2.2). For flows of a homogeneous or stratified fluid
with pressure gradient, the vertical distribution of the velocity and energy of “large vortices” already becomes
inhomogeneous within the framework of model (2.2). Nevertheless, for various types of flow. the application of
the rate of fluid entrainment from houogeneous layers into a turbulent intermediate layer. which is specified
by Eq. (4.1), has shown the efficiency of this approach in determining the average flow characteristics. On
the basis of (4.1), a shallow-water. three-layer model that describes the evolution of a turbulent layer in the
flows of homogencous and stratified fluids with velocity shear was constructed in {13, 14].

It should be noted that the role of the shallow-water multilayer equations is not limited by the possibility
of determining the average quantities in the flow. As in the case of a pressure-gradient-free mixing layer, the
average velocity of “large vortices” § determines the vertical distribution of the Reynolds stresses 7 in the
flow from formula (2.6), and the turbulent-layer thickness n can be sclected as a scale of turbulence [. Here
the vertical-velocity and turbulent-energy distributions are described by system (2.7) in the boundary-layver
approximation. ’

Three-Layer Model. We consider the problem of the formation of a mixing layer in a homogeneous
fluid in a channel of finite depth. Let the flow be bounded by two horizontal planes, the distance between
which is equal to H, and the channel be filled with a fluid. The gravity can be excluded by introducing the
modified pressure p* = p + pg(H — y) = p*(t.x). To describe the evolution of the average quantities in the
mixing laver., we apply the three-laver, shallow-water equations, in which together with the usual shallow-
water equations for homogeneous layers, the laws of conservation of total momentum and energy necessary
to find the flow parameters in a turbulent interlayer [13, 14] are used.

The steady-state flow equations for the average values in the lavers have the form (p = 1)

(Wt +n+h7),=0. (hEut), = —04q. (nu)y = 207,
(uEY /2 4+ p") . = 0. (Rt + i + h(u7)2 + p*H), =0, 4.2)

(Wt +na(a® + @) + R (u") 4+ 2Qp*) . = 0.
Here ht, h™, and 7 are the depths. u™ and «™ are the velocities in the upper and lower layvers, respectively,
and @ is the velocity in the interlaver, respectively, and Q = htut + nit + h™u™ = const.
Let, for x = 0, the steady-state mixing layer form from two uniform flows of depth 1133 moving with

velocity ug (Fig. 2). As a consequence of (1.2) we have the following relations:

Wt +n+h”=H, htut+na/2=hiud, R u” +nu/2 = hjuy,



W22 4+p = (w2 + 5 (W) /2+p" = (u5)2/2 + v},
AT (ut)? + it + h(u7)? + p*H = b (uf)? + hy (u5)? + pyH,

R 4+ npa@® + @) + (W) +20p* = b (ud)® + h (ug)® + 2Qp}.
Here Q = hJud + hy ug -

From (4.3). the desired variables 7, ht, u*, a, p* — pp = Ap, and § can be expressed as functions of
one variable, for example, Q = na. By virtue of the nonlinearity of the system, these dependences can be
ambiguous. For a given value of Q > 0, system (4.3) can be reduced to one equation in terms of the quantity
a=(ut+u")/2 as follows.

Let @ > 0 be given. Then, (¢t)? — (u7)? = (ud)? — (ug)? or v = Yoap/a, where v = (ut — u™)/2,
Yo = (ug — ug)/2, and ap = (ug + wy)/2. Further,

uF=a+vy, uw =a-v ht=0fuf-Q/2)/ut, h™=(hguy —Q/2)/u".

+

n=H-ht—h~, a=Q/n. Ap=p*=p§=((uf)? - (uT)?)/2.

Substituting the resulting expressions into the conservation law of total momentum, we obtain the
equation P(a.Q) = ht(ut)? + pa + h™(u7)? = hi (ud)? — hg (ug)? + ApH = 0 from which the dependence
a = a(Q) can be found and the values of the admissible flow parameters (b > 0, n > 0, and u* > 0) are
restored. The dependence ¢ = ¢°(Q) is determined from the energy equation, and, finally, the distribution
of the flow paramecters over the x axis can be found from the equation dQ/dz = 20¢(Q).

Velocity Distribution in the Mixing Layer. The distributions of the average quantities in the
mixing layer have been found above. In particular, the boundaries y = h™(x) and y = h™(x) + n(x) of the
mixing layer, the velocity of “large vortices” § = q(x), and the pressure on the upper lid of the channel
p* = p*(z) are found from Egs. (4.3). Therefore, for the horizontal and vertical velocity-vector components
w = a(x,y) and v = & y), and also for the root-mean-square velocity ¢ = §(x,y), in the boundary-layer
approximation the stea.v-state flow equations (2.7) take the form (p = 1)

i+ 0y =0, Qi+ 0, —0Gqy +p, =0. 4G, + ¢4, — oG, = —B4¢/n. (14.4)

Here o = agsign iy,

It is required to find a solutiou of (4.4) in the mixing layer A~ (x) < y < h™~(x) + n(x), because the large
vortices-induced vertical transfer is absent in the potential-flow regions 0 < y < h~(z) and H-ht(r) < y < H
(G = 0) and the velocity u = u®(x) does not depend on y. The vertical component v in these regions is
uniquely restored from the continuity equation and the no-slip condition at the boundaries

W(x.y) = —yuy for 0<y<h (),

B, y)=(H-yuf for H-h*(z)<y<H,
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and turbulence is absent (¢ = 0). Because a continuous solution in the domain 0 < y < H is being
constructed, the solution of (4. ) is known at the boundary of the mixing region. Let uf > ug and the
velocity profile be monotone (&, > 0). Then. we have 0 = o9. For construction of the solution inside
the mixing layer, it is convenient to pass to the variables z and ¢ (¢ is a stream function). As in the

above-considered case of a pressure-gradient-free mixing layer, Egs. (4.4) become a semilinear system:

iy — oqdy = —pp/ b — oqity = =344/ (). (4.5)
A solution of (4.5) is sought in the half-band = > 0, ¢ < ¥ < . where
hy H
Yo =— / W(0.y)dy = ~hgug. O = /ﬁ(0~y)d.f/: hgug -
0 hy

The streamline passing through the point A. at which the homogeneous flows merge (Fig. 3), corresponds to
the value ¢ = 0. The boundary of the mixing laver is set by the lines AB and AC. The solution & = u™(r),
G = q = 0 is known to the left of the line AB (region I). Similarly. the solution has the form & = ut(x),
G = q = 0 to the right of the line AC (in region II). It is required to find a continuous solution of (4.5) up to
the boundary in the region BAC. The lines AB and AC specified by the equations v = ¢~ (z) and ¢ = ¥ ()
are the characteristics of system (4.5):
dir~ (1’,)
Tdr
Thus, it is required to find a solution of the Goursat problem using the data on the characteristics for
the semilinear hyperbolic system (4.5) [G(x) > 0]. If the function «™ () > tmin > 0 in region I (0 < z < 1),
the a priori estimate &(z,¢’) > tumin > 0 holds in the region BAC for a monotone velocity profile in the mixing
layer (&y. > 0), and the only difficulty in solving (4.4) is the singularity of the right side of the equations,
because n(x) — 0 as x — 0. We note that the above solution of system (4.2) has bounded derivatives, i.e.,
the function p* is bounded as z — 0. Therefore, the pressure-gradient-free, self-similar solution considered
in Sec. 3 gives the asymptotic representation of the solution in the neighborhood of the point A.
If a reverse flow [u™(r) < 0] appears as a result of the increase in pressure p* during the development
of a mixing laver in a channel of finite depth. the formulation of the problem changes. In this paper, we omit
it.

_ dut(r _
= —oq(x). % = og(x).

Problem of an Injector. We consider the problem of a flat injector as an example of the formation
of a mixing layer with pressure gradient.

Let an injector be located in a flat channel of depth A and length L (Fig. 4). The channel is immmersed
into a quiescent incompressible fluid of density po = 1 and is connected to it freely. A uniform jet of an
ideal incompressible fluid of thickness hg , density po, and velocity uy flows out from the injector in parallel
to the bottom of the channel (which can be considered as a plane of symmetry of the flow). As a result of
the development of the mixing layer, the steady-state flow is accelerated in the upper layer. It is required
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to determine the flow parameters, the velocity distribution at the exit from the channel, and the “optimal”
disposition of the injector, i.e., the values of hy /H and L/H at which the mixing layer covers the entire cross
section at the channel exit. To reduce the problem to that considered above, it is sufficient to supplement
Eqs. (4.3) by the relation
(4g)*/2+ 15 = po, (4.6)
which follows from the potential-low condition in the upper layer. Here pg is the pressure in the quiescent
fluid. The desired quantities are «*, @, h%, n, Ap = p* — p§, and uf. The conditions p! = py and ut =
are satisfied at the channel exit. We do not consider the case where the mixing layer reaches the channel 1id
(hf = ()}, because it becomes an immersed jet in this case. If the channel length L is known, the additional
relation
Q.
Yy .
L= / ——2("7((2) dQ (14.7)
0
follows from the rate of fluid entrainment into the mixing laver. The dependence of the desired quantities
Q1 = mi and 7 = Q) (0 < Q < Q1) on the parameter uf can be found from (4.3) and (4.6), and the
dependence L = L(ugd) can be found from Eq. (4.7), and then the parameter u,(j* is defined. Indeed. for
uf =0, we have (0 < uf < ug)

Qi =miy =2hfug.  (u7)?* = (ug)* = (ug)>.
_ houT —Qy/2  hjuy — hiud .
hT = 0% — 0/ — 2ot ~ ot Ap = po—p} = ug /2. (4.8)
uj uj
_ hg(ud)? + by (ug ) — by (u])? — H(ug)?/2

m = Qi/a. oy = TR
274 ug

For 0 < Q < Qy, the dependence ¢*> = Q, ug' } is found from (4.3) similarly to the above-considered
mixing layer, and the channel length 1l can be found from (4.7) for a specified value of L = L(ud).

For an “optimal” injector (h.f’ = 0 and k] = 0), we derive the following equation for the unknown
quantity z = hy /H from (4.8):

1z—1+z2(:-1/2)/(1-z)*=0.

The single root z, & 0.267 can be calculated from this equation. The dimensionless parameters of the flow and
the “optimum” length of the channel are then determined from (4.7) and (4.8). In particular. L/H =~ 5.38.
Figure 5 shows the mean-velocity (curve 1) and Reynolds-stress (curve 2) distributions at the output cross

section of the “optimal” channel for 3/(20) = 6.
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-

00750).
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